CATEGORY THEORY	Quiz 1	Name:
Dr. Paul L. Bailey	Tuesday, August 13, 2019	

It will be convenient to use all of the notation of symbolic logic, so we can see more easily our application of DeMorgan's Law.

- V OR
- \land AND
- ¬ NOT
- \Rightarrow IMPLIES
- \Leftrightarrow IF AND ONLY IF

In this notation, DeMorgan's Laws may be written as follows.

- $\neg (p \land q) \Leftrightarrow [\neg p \lor \neg q]$
- $\neg (p \lor q) \Leftrightarrow [\neg p \land \neg q]$

Problem 1. Let A and B be sets. Show that

$$(A \smallsetminus B) \smallsetminus C = A \smallsetminus (B \cup C).$$

Solution 1. To show that two sets are equal, we show that each is contained in the other.

 (\subset) Let $x \in (A \setminus B) \setminus C$. Then $x \in A \setminus B$ and $x \notin C$. Thus $x \in A$, $x \notin B$, and $x \notin C$. Now, by DeMorgan's Law,

$$x \notin B \land x \notin C \Leftrightarrow \neg(x \in B) \land \neg(x \in C) \Leftrightarrow \neg(x \in B \lor x \in C) \Leftrightarrow \neg(x \in B \cup C) \Leftrightarrow x \notin B \cup C,$$

so $x \in A$ and $x \notin B \cup C$. Thus $x \in A \setminus (B \cup C)$.

 (\supset) Let $x \in A \setminus (B \cup C)$. Then $x \in A$, and $x \notin B \cup C$. By DeMorgan's Law (as above), $x \notin B \cup C$ if and only if $x \notin B$ and $x \notin C$. So, $x \in A$ and $x \notin B$ and $x \notin C$. Then $x \in (A \setminus B)$ and $x \notin C$, whence $x \in (A \setminus B) \setminus C$.

Solution 2. We show that $x \in (A \setminus B) \setminus C$ if and only if $x \in A \setminus (B \cup C)$:

$$\begin{aligned} x \in (A \smallsetminus B) \smallsetminus C \Leftrightarrow x \in (A \smallsetminus B) \land x \notin C \\ \Leftrightarrow (x \in A \land x \notin B) \land x \notin C \\ \Leftrightarrow (x \in A \land \pi \notin B)) \land \neg (x \in C) \\ \Leftrightarrow x \in A \land \neg (x \in B)) \land \neg (x \in C)) \\ \Leftrightarrow x \in A \land (\neg (x \in B) \land \neg (x \in C)) \\ \Leftrightarrow x \in A \land \neg (x \in B \lor x \in C) \quad \text{(by DeMorgan's Law)} \\ \Leftrightarrow x \in A \land \neg (x \in B \cup C) \\ \Leftrightarrow x \in A \land x \notin B \cup C \\ \Leftrightarrow x \in A \smallsetminus (B \cup C). \end{aligned}$$